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Abstract—Several recent works have studied the schedule for
mobile vehicles to recharge sensor nodes via wireless energy transfer
technologies. Unfortunately, most of them overlooked the important
factors of the vehicles’ moving energy consumption and limited
recharging capacity. These oversights may lead to problematic
schedules or even stranded vehicles. In this paper, we study the
recharging schedule that maximizes the recharging profit - the
amount of replenished energy less the cost of vehicle movements -
under these important constraints. We first derive the minimum
number of vehicles needed for energy neutral condition and
discover a set of desired network properties. Then we formulate the
recharge schedule optimization into a Profitable Traveling Salesmen
Problem with capacity and battery deadline constraints, which
we prove to be NP-hard. We propose two algorithms to solve
the problem. The first one is a greedy algorithm that maximizes
the recharge profit at each step; the second one first adaptively
partitions the network based on recharge requests, then forms
Capacitated Minimum Spanning Tree in each partition followed
by route improvements. Finally, we evaluate and compare the
performance of proposed algorithms and validate the correctness of
theoretical results through extensive simulations. Given a sufficient
number of vehicles, the adaptive algorithm can keep the number
of nonfunctional nodes at zero. Compared to the greedy algorithm,
it reduces the percentage of transient energy depletion by 30-50%
with 10-20% energy saving on vehicles.

Index Terms—Wireless rechargeable sensor networks, perpetual
operations, data collection, adaptive network partitioning, vehicle
scheduling.

I. INTRODUCTION

Wireless energy transfer is a revolutionary method to power
sensor nodes and such sensor networks are referred to as Wireless
Rechargeable Sensor Networks (WRSNs) [1]–[4]. Unlike energy
harvesting techniques where the effectiveness of the harvesting
method depends on uncertain environmental factors, wireless en-
ergy transfer provides a reliable way to rejuvenate nodes. Ideally,
the lifetime of a WRSN can be extended to infinitely long, or
perpetual operations. Charging vehicles (called SenCars) that
can approach sensors in close proximity are usually adopted
[2]–[4]. To ensure efficient operations, a recharge sequence is
calculated such that sensor nodes are recharged before energy
depletion [2]–[4]. In [2], a heuristic algorithm that finds the
maximum number of nodes to recharge within a bounded tour
length was proposed. In [3], the shortest recharge path is found
for recharging all the sensor nodes. In [4], an on-line algorithm
was provided to schedule multiple SenCars based on real-time
energy information gathered.

However, most of the previous works have ignored the energy
consumption of the SenCar itself for moving and the limit
of its charging capacity. The simplifications bring problems
when existing algorithms are applied in reality. First, they may
cause impractical schedules where SenCars deplete their energy,
become stranded and unable to return to the base station. The
network would eventually use up energy and stop operation
completely. Second, they lead to overestimation of SenCar’s
recharge capability and nodes’ lifetimes. Real SenCars have

limited capacity. They have to spend time returning to the base
station for battery replacement and cannot keep recharging nodes
continuously. Third, they may also result in inefficient node
selection and recharge sequences. Without considerations on
SenCars’ capacity and moving costs, one may choose nodes
faraway to recharge simply because they have lower energy
levels. But this can cause SenCars to travel back and forth over
long distances and waste significant amount of energy.

In this paper, we study the recharge schedule for SenCars
in a practical model where vehicles have limited capacity and
their movements consume energy. We propose to maximize the
recharge profit, the recharged energy less the traveling cost,
while meeting sensor nodes’ battery deadlines and SenCars’
capacity constraints. Considering SenCar’s moving cost and ca-
pacity brings us new challenges. On one hand, recharging nodes
close to a SenCar reduces its moving cost. On the other hand,
nodes all over the network, not only those close by, need recharge
once in a while. We have to achieve a balance between the need
to recharge the whole network and the desire to minimize the
traveling cost. In particular, we need to answer the following
questions: How many SenCars are needed for perpetual operation
given parameters such as a network’s size and nodes’ battery
capacity? How to schedule SenCars so they will not waste energy
traveling back and forth over long distances? Which nodes a
SenCar should select to recharge while ensuring it has enough
energy to return, and in which sequence so as to meet nodes’
battery deadlines?

To answer these questions, we first establish a mathematical
model based on the energy neutral conditions where the energy
consumed by and replenished into the network achieve balance.
We adopt results from probability theory to derive the minimum
number of SenCars needed. Then, given recharge requests, we
formulate the recharge optimization problem into a Profitable
Traveling Salesmen Problem with Capacity and Battery Deadline
constraints which was studied before but only has computation-
ally intensive solutions.

We propose two algorithms suitable to the context of our
problem. The first is a simple Greedy Algorithm that maximizes
a SenCar’s recharging profit at each step. However, it may lead
SenCars to travel long distances. We further propose a three-
step Adaptive Algorithm. After collecting recharge requests, it
partitions the network into several regions using the K-means
algorithm [14]. Each SenCar is assigned a region and its move-
ments are confined within the region, so long-distance travels
are avoided. Then each SenCar works independently to construct
Capacitated Minimum Spanning Trees in its designated region
where edges in the tree have the minimum traveling cost. This
ensures that the SenCar’s capacity is not exceeded so it can return
to its starting position. Finally, the algorithm performs route
improvements to meet nodes’ battery deadlines. It categorizes
nodes according to their lifetimes. An initial route containing



nodes that do not need prioritized recharge is first constructed
using Traveling Salesmen Problem algorithms. Then it inserts
nodes that need prioritized recharge into the route while ensuring
each insertion retains time feasibility of the whole recharge
sequence.

We make several contributions in this paper. First, we point
out the oversight of existing works on important constraints of
SenCars’ moving cost and limited capacity, and its impact on
existing recharge algorithms. We establish a mathematical model
to characterize energy consumptions in a practical network and
derive the minimum number of charging vehicles needed. We
also present several theoretical results such as minimum node
lifetime and adaptive recharge threshold. Second, we formulate
recharge optimization into a Profitable Traveling Salesmen Prob-
lem with Capacity and Battery Deadline constraints, and propose
two algorithms. The Adaptive Algorithm takes a systematic
approach to capture the constraints in the problem. Finally,
we conduct extensive simulations comparing the performance
of the proposed algorithms. The results have shown that when
the number of SenCars is sufficient, the Adaptive Algorithm
can keep all the nodes alive at all times. Compared to the
Greedy Algorithm, the Adaptive Algorithm can also reduce
nonfunctional nodes by 30-50% while saving 10-20% energy
on the SenCars. We also validate our theoretical results and
demonstrate the trade-off between minimizing SenCars’ energy
cost and improving network performance. To the best of our
knowledge, this is the first work to explore optimal recharge
sequences when both SenCars’ energy and dynamic sensor
battery deadlines are considered. This is also the first work that
provides a mathematical model to calculate the minimum number
of charging vehicles in a network where detailed sensing and
communication energy consumption is modeled.

The rest of the paper is organized as follows. Section II
outlines the framework, network components and assumptions.
Section III establishes a mathematical model and derives a set
of theoretical results. Section IV formalizes the recharge opti-
mization problem and proposes two algorithms. Finally, Section
V provides the evaluation results and Section VI concludes the
paper.

II. PRELIMINARIES

In this section, we present an overview of the components,
network model and assumptions.
A. Network Components

Fig. 1 gives an illustration of the network we consider.
SenCars perform wireless energy replenishment for sensor nodes
one after another following a recharge sequence. Sensory data is
generated at nodes and delivered to the Base Station in a multi-
hop fashion. The base station also collects energy information
periodically and it is where battery replacement for the SenCars
is conducted. In the Adaptive Algorithm, the base station per-
forms network partition and informs the SenCars of recharge
requests in their partitions using long range radios. Besides data
collection, sensors also monitor a number of targets that appear
randomly in the sensing field, stay at a location for a random
time before disappearing (e.g., meteorologic phenomena such as
lightening).
B. Network Model and Assumptions

We assume that Ns sensor nodes are uniformly randomly
scattered in a circular sensing field with radius r. Node density

Fig. 1. Illustration of the network architecture and components.
TABLE I

NOTATIONS

Notation Definition
Ns the number of sensor nodes
Nt the number of target nodes
r radius of the circular sensing field
λ traffic rate of each node
dr transmission range of sensor nodes
Cb battery capacity of sensor node
Cs recharge capacity of a SenCar
tr maximum recharge time of a node
v speed of SenCars
es energy consumed due to sensing per time slot

et, er energy consumed to transmit, receive a data message

of the network is ρ = Ns

πr2 . The base station is deployed at the
center of the circle. Time is equally slotted. In the first time
slot, Nt targets appear independently at random locations in
the field. For the next time slot, the target either stays at the
location with probability ps or appears at a new location with
probability 1 − ps. Each node has the same sensing range ds.
For simplicity, in this work we do not consider dynamic sensor
activation/deactivation schemes that exploit spatial diversity. We
denote p as the probability that a randomly chosen point is within
a given sensor’s sensing range. Hence, p =

d2
s

r2 .
Energy is consumed when nodes sense targets or trans-

mit/receive data messages. When targets are in a sensor node’s
sensing range, it consumes es energy in each time slot to detect
the targets. Sensor nodes perform basic functions to capture
environmental data in each time slot and generate data messages.
They have constant data generation rate λ. All sensors transmit
at the same power level with fixed transmission range dr. The
energy consumed for transmitting and receiving a data message
is denoted as et and er, respectively. Energy information is
collected periodically by the base station, using communication
protocols such as the method developed in [4]. Since the size
of energy information is much smaller than data messages
and it is collected less frequently, we mainly consider energy
consumptions due to transmission of data messages. 1

There are m SenCars with recharge capacity Cs and they
consume energy while moving around at a rate of ec J/m. To
model the relation between battery capacity Cb and total recharge
time tr, we use recharge curves of a Panasonic Ni-MH AAA
batteries with 780 mAh from available data sheets [5]. Table I
summarizes major notations and their corresponding definitions
in this paper.

1Energy information is usually a few bits and gathered every 3-6 hours
compared to data messages more than tens of bytes generated at minute-level
time slots.
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Fig. 2. State transition probabilities to detect a given target in a time slot.

III. THEORETICAL ANALYSIS

In this section, we analyze the minimum number of SenCars
required for perpetual operation, and derive minimum node
lifetimes and adaptive recharge thresholds for nodes in the
network.

A. The Minimum Number of SenCars

In an earlier work [4], we have proposed the energy neutral
condition that must hold in a long time period for the perpetual
operation of the network,

E(T ) ≤ R(T ) + E0 (1)

in which T is a large time, E(T ) is the total energy consumption
of the network up to T , R(T ) is the total energy replenished into
the network by the SenCars up to T and E0 is the initial energy
of all the sensor nodes. The energy neutral condition states that
the energy consumption of all the sensor nodes must be less than
or equal to the total energy available in long term. Otherwise,
sensor nodes would eventually deplete energy.

Our objective is to obtain the minimum number of SenCars
m needed for Eq. (1) to hold. First, we estimate the average of
R(T ) which is the amount of energy that can be replenished
into the network. The maximum recharge capacity of a SenCar
is achieved when it recharges sensor nodes continuously without
any idling time. To model the moving time between two consec-
utive locations, we find the average traveling distance between
two random locations in the circular field of radius r, which is
shown [6] to be d = 128

45π r ≈ 0.9r using Crofton’s mean value
theorem.

Therefore, to recharge a node to full capacity, on average, it
takes d/v+ tr time. Then the total energy for the m SenCars to
replenish into the network in T time is,

R(T ) =
mCbT

d/v + tr
. (2)

Next, let us derive E(T ) on the left hand side of Eq. (1), which
is determined by sensing, transmission and reception activities.
The transmission/receiption energy depends on data generation
rate and sensing energy depends on the spatial distribution of
targets and sensing range. Since sensing energy is consumed
when there exists any target in the sensing range, we first
calculate the probability that at least one target is detected in
a time slot.

Given a sensor node, let P1 and P2 denote the probabilities
that a certain target is in and out of its sensing range for a
time slot, respectively. The state transitions between P1 and P2

can be modeled as a Markov chain shown in Fig. 2. Using the
equilibrium conditions on the Markov chain, we can easily derive
P1 = p−psp

1−ps
= p, and P2 = 1−ps−p+psp

1−ps
= 1 − p. Since there

are Nt targets, the probability that there is at least one target in
a node’s sensing range is,

Pt = 1− (1− P1)
Nt = 1− (1− p)Nt (3)

For Ns sensor nodes, the probability that there are k sensor nodes
detecting the target follows a binomial distribution ∼ B(Ns, Pt).
Thus for time period T , the average energy consumption due to
sensing can be written as,

Es(T ) = esNsTPt = esNsT (1− (1− p)Nt) (4)

Next, let us estimate energy consumption due to transmis-
sion/reception of data messages. As studied in [7], a network
with h hops can be closely approximated by a circle with radius
r = hdr with h concentric rings. Based on the structure of the
network, each ring carries traffic from all outer rings [7]. Since
nodes are uniformly randomly distributed, we can obtain energy
consumption rate at the i-th ring,

µi =
(
(h2 − i2)(et + er) + (2i− 1)et

)
d2rπρλ, 0 < i ≤ h (5)

To elaborate the above formula, nodes in the outmost ring (i = h)
only need to transmit their own data whereas nodes at inner rings
need to forward all traffic from outer rings and transmit their
own data messages. Using (5), we can calculate the total energy
consumption due to data collection in time T ,

Ed(T ) = (
∑h

i=1 µi)T =
(∑h−1

i=1 [(h
2 − i2)(et + er)

+(2i− 1)et]d
2
rπρ+ (2h− 1)et)d

2
rπρ

)
λT

=
(
( 23h

3 − 1
2h

2 − 1
6h)(et + er) + h2et

)
d2rπρλT (6)

Summing up Eq. (4) and Eq. (6), we obtain the average value
of total energy consumption in T ,

E(T ) = Es(T ) + Ed(T ) (7)

Lemma 1: The probability for the energy neutral condition to
hold is,

Pneu = Φ

 mCT

d/v+tr
+ E0 − E(T )√

esNsTPt(1− Pt)

 (8)

where Φ(·) denotes the standard Normal cumulative distribution
function, E(T ) is obtained from Eq. (7) and E0 is the initial
energy of the network.

Proof: In E(T ) = Es(T ) + Ed(T ), only Es(T ) is a
binomial random variable with mean esNsTPt and variance
esNsTPt(1−Pt), and Ed(T ) is deterministic. Since we evaluate
the energy neutral condition in a long term, T is a large
number, we can approximate binomial distribution closely with a
normal distribution N (esNsTPt+Ed(T ), esNsTPt(1−Pt)) [9].
Thus the probability for the energy neutral condition to hold is
Pneu = Pr{R(T ) + E0 > E(T )}.

Proposition 1: The minimum number of SenCars required to
achieve perpetual operation is,

m =

⌈
(Φ−1(ϵ)

√
esNsTPt(1− Pt) + E(T )− E0)(d/v + tr)

CbT

⌉
(9)

where Φ−1(ϵ) is the inverse cumulative distribution function of
Normal distribution, ϵ is a value very close to 1 but not equal
to 1, E(T ) is obtained from Eq. (7) and E0 is the initial energy
of the network.

Proof: Because Φ−1(1) → ∞, we consider the energy
neutral condition holds with probability ϵ, a value very close
to 1 but not equal to 1. Take ϵ = 0.99 as an example.
To ensure Pneu ≥ 0.99, since Φ−1(0.99) = 2.33, we have

mCT
d/v+tr

+E0−E(T )√
esNsTPt(1−Pt)

≥ Φ−1(0.99). After some mathematical ma-

nipulations, we obtain the minimum number of SenCars m.



B. Node Lifetime and Adaptive Thresholding

To devise the recharge schedule, we need to know how long
a sensor node can survive after it has requested for recharge.
Such information is vital in making recharge decisions in the
next section. Since a node’s energy consumption rate depends
on both sensing activities and traffic patterns, it is important
for each node to know its number of hops to the base station.
This information can be obtained by message propagation from
the base station in various routing protocols. To estimate node
lifetime we have the following lemma:

Lemma 2: Given a sensor node i that is j hops away from
the base station with energy Ei|j , its minimum residual lifetime
Li|j is,

Li|j =


Ei|j/(es + etλ), j = h

Ei|j/(es + ( (h
2−j2)(et+er)

2i−1 + et)λ),
0 < j < h

(10)

Proof: First, the energy consumption due to transmission is
deterministic for each time slot. In the outmost ring (j = h),
nodes only need to transmit their own data messages. Therefore,
the maximum energy consumption in a time slot is es+etλ. On
the other hand, nodes in the inner rings need to forward traffic
from all outer rings and their own traffic towards the base station.
From Eq. 5, we can get the maximum energy consumption per
node in a time slot, es + ((h2 − j2)(et + er)/(2i − 1) + et).
Therefore, we obtain the minimum residual lifetime Li|j .

Then we have the following proposition.
Proposition 2: Given a set of nodes that need recharge Nr =

{1, , . . . , nr} where nr is the number of nodes in the set. For a
sensor node i ∈ Nr, if Li|j ≥ nrtr +(nr − 1)(2r/v), no matter
where the node is placed in the recharge sequence, it will not
deplete battery energy before its recharging starts.

Proof: The worst case occurs when the node is placed at
the end of the recharge sequence. The maximum waiting time to
get recharged is (nr−1)(tr+2r/v) since there are nr−1 nodes
ahead. 2r/v is the maximum traveling time between two sensor
nodes since 2r is the diameter of the field. Since the minimum
lifetime Li|j ≥ nrtr + (nr − 1)(2r/v) > (nr − 1)tr + (nr −
1)(2r/v), it is guaranteed to recharge the node before it depletes
battery energy.

From Proposition 2, given a recharge sequence, we can
calculate the possibility that a node can survive the entire
recharge process. This lays the theoretical foundations to solve
the recharge optimization problem in the next section.

We have observed that due to higher data traffic for nodes in
inner rings, they consume more energy than those in outer rings.
A fixed recharge threshold treats nodes at different rings the same
way, thus it is not fair for nodes with higher consumption rates.
To recharge these nodes more frequently, the recharge thresholds
should be made adaptive and proportional to energy consumption
rates at different rings. In other words, nodes closer to the base
station should request recharge more frequently than others.

Let τi(0 < τi < 1) denote the recharge thresholds for nodes
in the i-th ring. Since targets appear in the field uniformly
randomly, the differences of energy consumptions between nodes
at different locations is mainly caused by data communications.
We make the ratio between the recharge thresholds of ring i and
j equal to that between their energy consumptions due to data

transmission. Assume we have set the recharge threshold of the
first ring to be τ1. The thresholds for other rings

τi =
(h2 − i2)(et + er) + et(2i− 1)

(h2 − 1)(et + er) + et
τ1 ≈

2h2 − (i− 1)2 − i2

2h2 − 1
,

(11)
where 0 < i < h. The approximation is due to the fact that
et ≈ er in practice. To illustrate Eq. 11, let us consider h = 5,
after τ1 is set, we obtain τ2 = 45

49τ1, τ3 = 37
49τ1, τ4 = 25

49τ1 and
τ5 = 9

49τ1.
IV. CAPACITATED MULTI-VEHICLE RECHARGE PROBLEM

WITH BATTERY DEADLINES

In this section, we study a Capacitated Multi-Vehicle Recharge
Problem with Battery Deadlines (CaMP-BaD) and consider
practical constraints from real sensing applications. The first
challenge is the constant changes (i.e., decrease) of SenCars’
energy due to moving and recharging sensor nodes. The recharge
route should be planned carefully to reflect SenCars’s current
energy status and traveling costs to nodes’ locations. The second
challenge is the nonuniform energy consumption due to data
transmissions. Some nodes consume energy at higher rates and
should be taken care of more frequently than others to maintain
the functionality of the network. Further, the random appearances
of targets trigger sensing and data traffic, adding to the dynamics
of energy consumption. The recharge routes should reflect all
aforementioned concerns.

Next we show the recharge problem can be formulated into
a Profitable Traveling Salesmen Problem with Capacity and
Battery Deadline constraints (PTSPCBD). In the Profitable Trav-
eling Salesmen Problem [10], a reward is collected by visiting
a city while the objective is to maximize the profit which is
defined as the reward minus cost. In our problem, the reward
represents the amount of energy that can be replenished into a
sensor node and the cost measures the energy cost in traveling
to that node’s location.

To tackle the problem, we first present a straightforward
Greedy Algorithm (GA). After realizing that the greedy algorithm
might incur extra movements of SenCars, we further propose a
three-step Adaptive Algorithm (AA) through 1) adaptive network
partition using K-means algorithm, 2) Capacitated Minimum
Spanning Tree (CMST) formation and 3) route improvements
using node insertions. By partitioning the network, the SenCars
are confined in their own regions so traveling back and forth
through the entire field is avoided. Then we form CMST for
each SenCar. The trees indicate which subset of sensor nodes the
SenCar should select to minimize traveling cost and ensure the
total weight of the tree is within the SenCar’s recharge capacity.
After that, we perform route improvements on nodes in CMST
to capture sensor nodes’ dynamic battery deadlines. We also
analyze the complexity of the proposed algorithms.
A. Problem Formulation

The recharge optimization problem can be defined as follows.
Given a set of SenCars S = {1, 2, . . . ,m} and a set of
recharge node list Nr = {1, 2, . . . , nr}, we formulate the CaMP-
BaD problem into a PTSPCBD problem. Consider a graph
G = (V,E), where Vi (i ∈ Nr) is the location of sensor
node i to be visited, and E is the set of edges. Each edge
Eij is associated with a traveling energy cost cij , which is
proportional to the distance between nodes i and j. A SenCar



has recharge capacity Ca that determines the maximum number
of nodes it can recharge before it goes back to the base station
for its own battery replacement. Different SenCars could have
different recharge capacities during the run. Each sensor node
i has lifetime li and demand (reward) for energy recharge ri
(demand equals the total battery capacity of a sensor node minus
its residual energy). Ai specifies the arrival time for a vehicle at
sensor node i.

We introduce two decision variables xij for edge Eij and yia
for vertex Vi. The decision variable xij is 1 if an edge is visited,
otherwise it is 0. The decision variable yia is 1 if and only if
vertex i is served by vehicle a, otherwise it is 0. ui is the position
of vertex i in the path. Our objective is to maximize the total
amount of energy recharged minus total traveling energy cost of
the SenCars while ensuring the recharge capacities of SenCars
are not exceeded and no sensor node depletes battery energy.

P1 : max

{
m∑

a=1

nr∑
i=1

riyia −
nr∑
i=1

nr∑
j=1

cijxij

}
(12)

Subject to
nr∑
j=1

x
(a)
0j =

nr∑
i=1

x
(a)
i0 = 1,∀a = 1, 2, . . . ,m (13)

nr∑
i=1

xik =

nr∑
j=1

xkj = 1;∀k = 2, . . . , nr (14)

nr∑
i=1

riyia ≤ Ca,∀a = 1, 2, . . . ,m (15)

m∑
a=1

yia = 1,∀i = 1, 2, . . . ,m (16)

Ai ≤ li;∀i = 1, 2, . . . , nr (17)
xij ∈ {0, 1};∀i, j = 1, 2, . . . , nr, (18)
yia ∈ {0, 1};∀i = 1, 2, . . . , nr,∀a = 1, 2, . . . ,m (19)
2 ≤ ui ≤ nr;∀i = 2, 3, . . . , nr (20)
ui − uj + (nr −m)xij ≤ nr −m− 1

∀i, j = 2, 3, . . . , nr, i ̸= j (21)

In the above formulation, constraint (13) states that the recharge
tour for each SenCar starts at position 0 and finishes at position
02. Constraint (14) ensures the connectivity of the path and
every vertex is visited at most once. Constraints (15) and (16)
guarantee the vehicle’s capacity is not violated and each vertex is
visited by only one SenCar. Constraint (17) guarantees the arrival
time of the SenCar is within each sensor’s residual lifetime.
Constraints (18) and (19) impose xij and yia to be 0-1 valued.
Constraints (20) and (21) eliminate the subtour in the planned
route, which is formulated according to [11]. The classic TSP
with Profits can be considered as a special case of CaMP-BaD
with unlimited capacity and deadlines. Since TSP with Profits is
known to be NP-hard [10], CaMP-BaD is also NP-hard.

Due to the nature of our problem, it is not realistic to
use standard optimization techniques [12], [13] because these
methods deal with datasets of static inputs and the optimization
is usually done offline through a one-time effort. In contrast,
energy consumption in our framework is probabilistic in nature.

2Position 0 here is the starting position of the SenCar

A SenCar’s recharge capacity declines after recharging sensor
nodes, so the input to our problem is more dynamic than that
most existing solutions have considered. Furthermore, existing
algorithms require high computation power that may not be
available on SenCars. Therefore, we need to design algorithms
suitable to our problem context. Next, we present two such
algorithms.

B. Greedy Algorithm (GA)

The simplest approach is a greedy algorithm which selects
the node with the maximal recharge profit (i.e., recharge reward
less traveling cost) for each node selection. After a SenCar
finishes recharging a node, it picks the next available node with
the maximal profit. When the SenCar’s energy falls below a
threshold χ, it returns to the base station for battery replacement
and then resumes recharge in the same fashion.

Despite of its simplicity, GA may have some problems in
practice. The first problem is that the SenCar might move back
and forth over long distances, thereby increasing the traveling
energy cost. This happens when the node with the maximum
profit lies faraway, and the energy efficiency of SenCars can
deteriorate. Second, because the only consideration is profit,
it may not fulfill a recharge request in a fixed time. These
observations offer us room for further improvements. To prevent
SenCars from traveling long distances, we can confine the scope
of movements by partitioning the network into several regions
and assigning each SenCar to one of the regions. Second, a
more sophisticated scheduling method should be developed to
capture SenCars’ capacity as well as sensors’ battery deadline
constraints. In the next subsection, we will introduce an Adaptive
Algorithm (AA) to address the limitations in GA.

C. Recharge by Adaptive Algorithm (AA)
1) Adaptive Network Partitioning: In the first step, the base

station requests sensor nodes for energy information periodically
using the method in [4]. Then it adaptively partitions the network
into m regions according to the originating locations of requests.
The result of partitions is disseminated to the SenCars using long
range radio. We utilize the well-known K-means algorithm to
perform the partition [14]. Using the K-means algorithm would
allow the SenCars to adaptively select a subset of nodes with
their square sum of distance minimized regarding to the centroid
of each region so the SenCar would only move in a confined
scope, and most likely with less distances. For each region, our
objective is to minimize the intra-region square sum of inter-node
distance. Now we briefly explain the partitioning process.

Initially, we select a number of m sensor nodes with the
minimum lifetime from Nr to be the centroid of regions. We
assign each node to the closest centroid. After all the nodes
have been associated with a centroid, we re-calculate centroid
positions taking the average value of x and y coordinates of
nodes in the region. This process is repeated until the centroids
no longer change. After the partition, the centroid of each
region represents a virtual position that has the minimal sum
of distances to all the nodes in its region. This position can be
used as the starting position for the SenCar to recharge nodes
in its region. As an example of m = 3, Fig. 3(a) shows all the
nodes requesting for recharge. Fig. 3(b) is the result of K-means
partitions.
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2) Generating Capacitated Minimum Spanning Tree: In the
first step, m regions are generated and each SenCar only needs
to take care of the nodes in its region. To decide the route to
recharge sensor nodes, we need to ensure each SenCar’s recharge
capacity is not exceeded (Eq. (15)). On the other hand, we want
to minimize the traveling energy cost for the SenCar. These re-
quirements lead to finding Capacitated Minimum Spanning Tree
(CMST) [15] where the total sum of demands from nodes does
not exceed the SenCar’s capacity and the minimum traveling
energy cost can be found by constructing the minimum spanning
tree.

The exact solution to CMST requires us to go over all possible
tree setups and pick the one with the lowest cost, which involves
exponential computation. Fortunately, an efficient algorithm by
Esau-Williams(EW) can find a suboptimal solution very close to
the exact solution in polynomial time [15]. The EW algorithm
merges any two subtrees when there is a “saving” in the total
cost of two trees.

Nevertheless, there are some limitations of the original EW
algorithm when applied for our problem. First, when determining
whether two subtrees can be merged, only the demands from
sensor nodes are counted whereas the traveling costs on edges
are not considered. Second, multiple such trees can be generated.
How does the SenCar decide which tree to pick? To overcome
these limitations, we extend the original EW algorithm. First, in
[17], a deterministic upper bound on the shortest tour length
is developed as

√
2(n− 2)ab + 2(a + b) for a rectangle of

side length a, b and n nodes. If we consider the circular field
as inscribed in a square with side length 2r, we have a loose
upper bound on the traveling cost of nodes in the subtree with
nb nodes, 2r(

√
2(nb − 2) + 4)ec. Second, when multiple trees

are generated, we select a tree that maximizes the ratio of
total energy demand to traveling cost. In this way, we can
exploit limited resources on SenCars better and improve energy
efficiency of the network.

Next, we explain our extension to the EW algorithm in
detail. Each SenCar computes CMST independently by itera-
tively updating a distance matrix. The distance matrix facilitates
the computation process by maintaining costs of tree nodes.
Let us denote recharge set Na with na nodes for SenCar a
(
∪m

a=1 Na = Nr). We define trade-off function ti for each node
in its recharge set Na, ti = min(c

(a)
ij )− c

(a)
0i and j ∈ Pi, where

Pi is the neighboring set of node i, min(c
(a)
ij ) finds the minimum

cost from node i to its neighbor j in Pi and c
(a)
0i is the cost from

node i to SenCar’s starting position (i.e., the root)3. The trade-

3In order to reduce intra-region traveling cost, we set the centroid output from
K-means algorithm to be the root.

off function evaluates whether it is beneficial to merge subtrees
of nodes i and j. A positive ti indicates that it incurs smaller
cost for the SenCar to directly travel from the root to node i so
merging subtrees of nodes i and j is not preferred. A negative
ti indicates how much it can be saved by connecting subtrees of
i and j. Thus the most negative ti results in the most savings in
an iteration.

After ti has been computed, we search through all trade-offs
ti(∀i = 1, . . . , na), looking for the minimum trade-off (i.e., the
most negative value). Assume tk is the most negative trade-
off and j is k’s minimum cost neighbor. To capture SenCar’s
capacity constraint in Eq. (15), if the sum of total demands from
the subtrees of k and j plus upper bound of their traveling cost
is less than the recharge capacity (which means we can cover
the subtrees of k and j under the current recharge capacity), we
merge the subtrees of k and j. Since the action of merging k and
j has resulted in a lower total traveling cost to k, direct traveling
from the root to reach k has higher cost and should be avoid.
So we remove the edge from node k to the root by setting c

(a)
0k

in the distance matrix to ∞.
At this point, two subtrees satisfying the recharge capacity

with minimum sum of cost have been merged, and we need to
update the minimum cost of the newly merged tree to the root.
It is done by updating the minimum cost in the distance matrix
from the tree to the root by setting the value to min(c

(a)
0i ), where

i is the node in the newly merged tree.
On the other hand, if merging subtrees of k and j violates

SenCar’s recharge capacity, we need to restrict any further
actions to merge j to k because these two trees cannot be covered
by the SenCar in a single run. Then we recompute the trade-off
function tk to search for the next neighboring node that results
in minimum trade-off until the next valid neighboring node j is
found and merged to the existing trees. The iteration continues
until all the trade-offs become nonnegative, in other words, no
more saving can be made.

After the CMST has been generated, the SenCar selects a
tree with the maximal ratio of recharge demand to traveling
cost and utilize the route improvement algorithm to form the
final recharge sequence among the tree nodes. After the SenCar
finishes recharging nodes in a tree, it checks whether its energy
falls below a threshold. If so, it returns to the base station
for battery replacement. Table II shows the pseudo-code of our
extended EW algorithm. Fig. 4(a) shows an example of CMST
formed in each region.

3) Insertion Algorithm for Route Improvement: After the
CMST has been obtained, next we want to produce a recharge
sequence for nodes such that for each node the SenCar arrives
before its battery deadline. Let us denote the result from CMST
to be a recharge node set N (a)

r (N (a)
r ⊆ Na). Recall that if

the condition in Proposition 2 is satisfied, a node can be placed
anywhere in the recharge sequence. We call such a set of nodes
a feasible node set N (a)

f . Otherwise, a node may need prioritized
treatment to meet its battery deadline. We denote such a set of
nodes as a prioritized set N (a)

p (N (a)
f ∪N (a)

p = N (a)
r ).

Intuitively, we first use a Traveling Salesman Problem algo-
rithm (e.g., the O(n2) nearest neighbor heuristic algorithm [16],
where n is the number of nodes) to find a feasible solution as the
initial sequence Ψ for nodes in the feasible set N (a)

f . Then we



TABLE II
EXTENDED ESAU-WILLIAMS ALGORITHM

input: recharging node set Nr , distance matrix D(a),
recharge capacity Ca, demand of nodes di, i ∈ Na.
output: CMST nodes need to recharge.
Initialize t(a) < 0, weight of tree, C(a) = 0.
while (t(a) < 0)

Find neighbor mi of i results min cost, min
mi

D(a)(i,mi).

Compute trade-off value list t(a)i = D(a)(i,mi)−D(a)(1, i).
Find k and j resulting most negative trade-off value,
k ← min

i
(t(a)), j ← mk.

do
Add new nodes Nnew ← k + j if not exist in current trees
if weight of merging subtree of Nnew < Ca

Add Nnew to corresponding tree i

Update cumulative weight of corresponding tree i, C(a)
i .

Declare Nnew is accepted.
else
update D(a)(k, j)←∞
Search for next min cost neighbor for k,
mk ← min

mk

D(a)(k,mk).

Recompute trade-off for k, t(a)k = D(a)(k,mk)−D(a)(1, k).
Declare Nnew rejected.
until (Nnew is accepted) or (all t(a)i ≥ 0)

end while
Select a tree results maximum energy efficiency.

insert nodes from the prioritized set N (a)
p into Ψ while ensuring

the battery deadline in Eq. (17) for all nodes are still met. To
this end, we sort the nodes in N (a)

p in a descending order of
residual lifetimes and denote the sorted sequence as Ω. We insert
these nodes starting from the first node Ω1. Let Ai denote the
arrival time of the SenCar at the i-th node in the shortest path
Ψ, i = {1, 2, . . . , n(a)

f }.
To insert the j-th node Ωj from Ω into Ψ, we first find position

mt in Ψ such that Amt ≤ lΩj and Amt+1 > lΩj where lΩj

is Ωj’s lifetime. We call mt the temporary maximum position
to insert Ωj . It indicates the maximum number of nodes in
Ψ that can be served before node Ωj depletes its battery. To
accommodate the remaining |Ω| − j nodes, we need to find
a position such that even all the remaining nodes are inserted
before Ωj , Ωj can still meet its battery deadline. We find the
maximum position m such that Am ≤ Amt −

∑na
p

i=j+1 ti and

Am+1 > Amt −
∑na

p

i=j+1 ti, where ti is the recharge time of Ωj .
Now, the maximum position m represents the rightmost position
Ωj can be inserted if all remaining nodes are later inserted before
Ωj .

For each of the m possible positions that Ωj can be inserted,
a total traveling cost is computed and the one that minimizes
the traveling cost is selected as the final insertion position for
Ωj . Then we obtain a new sequence Ψ and remove Ωj from
Ω. The iteration continues until we exhaust Ω or an infeasible
situation is encountered. Table III shows the pseudo-code of the
insertion algorithm. Fig. 4(b) demonstrates the recharge tours for
the SenCars in their designated regions.
D. Complexity Analysis

We now analyze the complexity of our algorithms. The
complexity of the greedy algorithm is O(nr) because it only
selects the maximum profitable node at each step. For the

TABLE III
INSERTION ALGORITHM

input: CMST N (a)
r , lifetime li and recharge time ti, i ∈ N (a)

r ,
distance matrix D(a), feasible set N (a)

f satisfying Proposition 2.
output: resultant recharge sequence Ψ.
Compute shortest path in the feasible set, Ψ← TSP(N (a)

f )
Sort N (a)

p in a descending order of lifetime as Ω
Initialize i← 1, last step node position k ←∞.
while Ω ̸= ∅

Find temporary max position mt in Ψ such that
Amt ≤ lΩi and Amt+1 > lΩi

Find the max insertion position m such that
Am ≤ Amt −

∑np
r

k=i+1 tk and Am+1 > Amt −
∑np

r
k=i+1 tk.

if Cannot find m ≥ 0. break,return infeasible and report.end if
Set minimum cost cmin ←∞.
for x from 0 to m
Insert node Ωi into Ψ, get temporary sequence Ψt

Calculate cost c←
∑|Ψt|−1

j=1 Da(j, j + 1).
if c < cmin, Ψ← Ψt, cmin ← c, k ← x. end if

end for
i← i+ 1, update Ω← Ω− i

end while
Return recharge sequence Ψ, minimum cost cmin.
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Fig. 4. Procedures of Adaptive Algorithm (CMST and recharge route). (a)
Establish CMST. (b) Improve recharge route.

adaptive algorithm, the base station has abundant resources
and it performs the k-means algorithm. So we focus on the
computing burdens on SenCars for calculating CMST and route
improvements. In the worst case, there is only one SenCar to
recharge nr nodes. For the extended EW algorithm, finding the
minimum trade-off value requires n2

r+2nr iterations at the outer
loop. In the inner loop, the worst case is that for a node with
the minimum trade-off value, every minimum-cost neighbor is
rejected due to capacity violations. So nr iterations are required.
In sum, its time complexity is O(n3

r).
For the route improvement algorithm, running a TSP algo-

rithm requires O(n2
r) time. Sorting nodes’ lifetimes requires

O(nr log nr) time. Then, insertion requires O(n2
r) time. Hence,

the total time complexity of route improvement algorithm is
O(n2

r) and the adaptive algorithm takes O(n3
r) time.

V. PERFORMANCE EVALUATIONS

We have conducted extensive simulations to evaluate our
algorithms using a discrete event-driven simulator. We examine
a network of 500 sensor nodes uniformly randomly distributed
over a circular field with radius r = 100m,h = 5. Dijkstra’s
shortest path routing algorithm is used to send messages to the
base station at rate λ = 10 pkt/min. Each time slot is 1 min.
Sensor nodes are equipped with CC2430 communication module
that draws 27mA current when either transmitting or receiving
at a voltage of 3V. Messages have the same length at 30 bytes
and the bit rate is 1 Kbps (et = er = 1.94mJ). The sensing



unit comprises of a plugged-in Passive Infra-Red module which
on average draws 5mA at 3V. When there are targets in a node’s
sensing range, it consumes 0.9 J/min (5mA × 3V × 60s). Since a
higher initial energy takes longer time for the network to achieve
equilibrium, we set all the sensors to have 50% of their full
battery initially to make the network enter equilibrium faster.

Sensor nodes have adaptive recharge thresholds at dif-
ferent rings according to Eq. (11), with τ1 ∼ τ5 =
0.95, 0.87, 0.72, 0.48, 0.18, respectively. The battery’s recharge
time is modeled from [5]. We assume SenCars are electric-
powered vehicles carrying FPGAs (for computation), communi-
cation modules and high density battery packs (e.g., 12A, 5V
standard ones can easily satisfy our needs). The vehicle can
weight tens of pounds and we assume it is 20 lbs. Using the
method in [8], we estimate that a vehicle consumes energy at
a rate of 5.59 J/m. To evaluate how the number of SenCars
affects system performance as well as validate theoretical results
in Proposition 1, we vary the number of SenCars m from 2 to
4 and set the simulation time to 4 months.

A. Nonfunctional Nodes and Energy Consumption vs. Recharge

First, we examine the evolution of the number of nonfunc-
tional nodes. When a sensor node depletes its battery energy,
it becomes nonfunctional until recharged by SenCars. Fig. 5
presents the results of nonfunctional nodes by proposed algo-
rithms.

For the Greedy algorithm (GA), when m = 2, the number
of nonfunctional nodes surges intensively around 22 days to
over 50% until it slowly decreases to within 10% around 42
days. This is because the SenCars find out that nodes closer
to the base station have more profits. Thus they do not serve
nodes in the outmost ring (36% of nodes) immediately even
after their requests. SenCars only cover them when their batteries
nearly deplete. By then, SenCars’ recharge capacity (m = 2) is
temporarily exceeded, which causes the big spike. Although the
two SenCars can gradually resolve most nonfunctional nodes, it
is observed that there is persistently more than 5% nonfunctional
nodes. In contrast, the Adaptive Algorithm (AA) provides more
stability. When m = 2, there is no such huge spike. Nonfunc-
tional nodes are well within 10% all the time. This is because
AA captures the sensor battery deadlines. For m = 3, 4, AA
also yields better results. When m = 4, AA can reduce the
nonfunctional nodes to zero.

We observe that m = 3 is likely to be a threshold since
two SenCars are definitely not enough. From Proposition 1,
after plugging in the experimental parameters, we obtain m =
⌈3.15⌉ = 4. Thus m = 3 can barely satisfy the energy neutral
condition. This calculation matches our observations in Fig. 5
(b), validating the correctness of our theoretical results.

Fig. 6 shows the cumulative energy consumption vs. replenish-
ment. For clarity and better observing the gaps and intersections
between curves, we plot 2 months’ simulation time and magnify
a portion of the curves. The curves represent the overall energy
status of the network. If the energy replenishment curve is above
the energy consumption curve, more energy has been refilled into
the network than consumed, and vice versa. First, in Fig. 6(a), the
replenishment curves when m = 3, 4 are well above the energy
consumption curves for GA. A larger gap is observed with
m = 4 representing higher energy replenishment capabilities. In

0 20 40 60 80 100 120
0

10

20

30

40

50

Time (day)

P
er

ce
nt

ag
e 

of
 N

on
fu

nc
tio

na
ls

 (
%

) Nonfunctional Node of GA 

 

 

m=2
m=3
m=4m=2

m=3
m=4

0 20 40 60 80 100 120
0

2

4

6

8

Time (day)

P
er

ce
nt

ag
e 

of
 N

on
fu

nc
tio

na
ls

 (
%

) Nonfunctional Node of AA

 

 

m=2
m=3
m=4

m=2

m=3

m=4

(a) (b)
Fig. 5. Evolution of nonfunctional nodes. (a) GA. (b) AA.
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Fig. 6. Cumulative energy consumption vs. replenishment. (a) GA. (b) AA.

contrast, with m = 2, the energy consumption curve stays above
energy replenishment curve until the two curves start to merge
around 22 days. This is because from the very beginning, more
energy is consumed than replenished. Around 22 days, a large
number of nodes have depleted energy and stopped consuming
energy, which brings down the consumption curve. In Fig. 6(b),
all the replenishment curves are above their consumption curves
indicating that AA can put more energy into the network than
GA.

B. Energy Cost of SenCars and Data Collection Latency

Next we evaluate the traveling energy cost of SenCars. Table
IV compares the average traveling cost per SenCar for the
proposed algorithms. When m = 2, a little more energy cost is
observed with AA. Since there are only two partitions when m =
2, the SenCar still needs to travel on half of the sensing field. AA
takes care of nodes in the outmost ring preemptively before they
deplete energy, thus more energy cost is observed. With GA, the
SenCars travel to the outmost ring only when the recharge profits
there are larger, but at that time, those nodes nearly deplete their
energy and many of them become nonfunctional as observed
earlier. Although GA has lower traveling cost when m = 2, the
network performance deteriorates greatly. When m = 3, 4, we
can partition the network into more regions with smaller sizes so
the movements of SenCars can be confined in smaller regions.
This brings down the energy costs for SenCars. However, as GA
still directs SenCars to recharge nodes with the maximal profit,
long distance travels are inevitable. Thus AA incurs less energy
cost than GA.

To transmit the sensed data to the base station in a timely
manner, all the nodes should be functional on a routing path.
We assume static shortest routing paths by Dijsktra’s algorithm

TABLE IV
COMPARISON OF TRAVELING ENERGY COST ON SENCARS.

Number of SenCars m = 2 m = 3 m = 4
GA (KJ) 0.33 0.78 1.19
AA (KJ) 0.41 0.67 0.94



TABLE V
COMPARISON OF AVERAGE DATA COLLECTION LATENCY.

Number of SenCars m = 2 m = 3 m = 4
GA (hrs) 6.14 4.22 1.9
AA (hrs) 0.74 0.05 0.02
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Fig. 7. Comparison of recharge fairness. (a) GA. (b) AA.

are used. If a node depletes energy, all the pending messages
are buffered at senders until the path is restored. Table V shows
average data latency over the entire simulation time. We can see
that AA results in much shorter latency than GA. The significant
improvement is due to the route improvement algorithm that
treats nodes with lower lifetimes with higher priority.

C. Recharge Fairness and Duration of Nonfunctional Nodes
Recharge fairness indicates whether SenCars can recharge

nodes commensurate to their workloads. Those having more
workload (e.g., nodes near the base station) should be recharged
more frequently. This is reflected from the functional time of
sensor nodes. To quantify recharge fairness, we leverage the
fairness index from [18],

F =
(
∑n

i=1 xi)
2

n
∑n

i=1(xi)2
, (22)

in which xi is a normalized indicator whether a node is func-
tional in a time slot. xi equals 1/Ns if i is functional in a time
slot, otherwise, it is zero. The fairness index F ranges from 0
(worst case if all nodes are nonfunctional) to 1 (best case if all
the nodes are functional) here. We can see from Fig.7(b) that AA
can distribute energy resources fairly among the nodes especially
when m = 4. In Fig.7(a), when the nodes in the outmost ring
become nonfunctional, the fairness of GA algorithm severely
degrades as the SenCars only recharge nodes with maximum
profits.

Fig. 8 plots the percentage of nonfunctional durations of nodes
as a function of their locations. Using GA, nodes near the
base station has a maximum of 5.14% time in nonfunctional
states whereas AA only 0.9%. Further, AA spreads nonfunctional
durations across the field while the spikes of GA are highly
concentrated. This is because that nodes close to the base
station consume energy faster and are more prone to become
nonfunctional. GA considers profit only and has no measure
for battery deadlines. In contrast, AA considers both profit and
battery deadlines. Therefore, the duration of nonfunctional nodes
with AA is significantly less than that of GA.

VI. CONCLUSIONS

In this paper, we consider two important factors overlooked
by previous studies, the charging vehicle’s energy consumption
and capacity limits in WRSN. We first establish a practical
mathematical model, formally derive the probability that the
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Fig. 8. Comparison of durations for nonfunctional nodes when m = 4. (a)
GA. (b) AA.

energy neutral condition holds and the minimum number of
SenCars needed. We formulate recharge optimization problem
into a Profitable Traveling Salesmen Problem with Capacity
and Battery Deadline constraints, which is NP-hard. To solve
the problem with low complexity, we propose two algorithms.
The greedy algorithm maximizes the recharge profit in each
step. We further propose a three-step adaptive algorithm that
systematically captures the recharge capacity and nodes’ battery
deadline constraints in the problem while minimizing traveling
costs. We evaluate and compare the performance of the proposed
algorithms by extensive simulations. They show that the adaptive
algorithm can provide better stability for the network by reducing
the number of nonfunctional nodes and the length of their
nonfunctional durations. We also validate the theoretical results
through simulations and demonstrate the adaptive algorithm can
save energy on SenCars.
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