
Autoscaling for Hadoop Clusters

Anshul Gandhi, Sidhartha Thota
Stony Brook University

{anshul,sthota}@cs.stonybrook.edu

Parijat Dube, Andrzej Kochut, Li Zhang
IBM Research

{pdube,akochut,zhangli}@us.ibm.com

Abstract—Unforeseen events such as node failures and re-
source contention can have a severe impact on the performance
of data processing frameworks, such as Hadoop, especially in
cloud environments where such incidents are common. SLA
compliance in the presence of such events requires the ability
to quickly and dynamically resize infrastructure resources.
Unfortunately, the distributed and stateful nature of data
processing frameworks makes it challenging to accurately
scale the system at run-time. In this paper, we present the
design and implementation of a model-driven autoscaling
solution for Hadoop clusters. We first develop novel gray-box
performance models for Hadoop workloads that specifically
relate job execution times to resource allocation and workload
parameters. We then employ these models to dynamically
determine the resources required to successfully complete the
Hadoop jobs as per the user-specified SLA under various
scenarios including node failures and multi-job executions. Our
experimental results on three different Hadoop cloud clusters
and across different workloads demonstrate the efficacy of our
models and highlight their autoscaling capabilities.

I. INTRODUCTION

The growing need for data processing and analytics
has resulted in the development of a broad set of tools
specifically tailored for data processing, such as Hadoop [4]
and Spark [5]. Cloud service providers, recognizing this
emerging trend, have started incorporating analytics as one
of the key capabilities within their Cloud offerings (such
as Elastic MapReduce [3] from Amazon [2] and the Sahara
project [9] from OpenStack [7]). Cloud users are typically
interested in completing their analysis in a timely manner
(execution time SLA) while minimizing their resource rental
cost. Unfortunately, this is a difficult task for cloud-deployed
data processing systems for several reasons:
1. The dynamic, shared nature of cloud computing often

results in unpredictable application performance. For ex-
ample, job progress can be (severely) affected by node
failures or resource contention due to colocated applica-
tions [10], [15], as we illustrate in Figure 1 (see Section III
for our experimental setup). Subsequent dynamic perfor-
mance recovery and execution time SLA compliance are
non-trivial.

2. Data processing jobs are often composed of multiple
stages, each requiring possibly different resource alloca-
tions.

3. The performance of such applications depends on many
internal and external parameters (for example, Ganglia

(a) Node failures (b) Resource contention

Figure 1. Performance variation in the cloud due to, for example, node
failures and resource contention can lead to SLA violations for Hadoop
applications.

provides 200+ metrics for monitoring Hadoop), and these
relationships are often complex. For example, job exe-
cution time depends on resource allocation, input data
set size, job configuration parameters, etc., in addition
to being workload-dependent (see Section IV). Of these,
resource allocation and job configuration parameters typ-
ically affect execution time non-linearly [16], [26].
The above challenges make it difficult to meet SLA re-

quirements while efficiently utilizing resources. On the other
hand, over-provisioning can help meet SLAs, but leads to
wastage of resources, and is thus expensive. Prior work on
performance management of data processing systems has
largely focussed on optimal static resource allocation, such
as ARIA [26] and Elastisizer [20]. The few approaches
that focus on dynamic allocation rely on expensive, com-
plex simulations (as in Jockey [14]) or optimizations (as
in Rayon [12]), or manually tuned heuristics (as in MR-
Runner [17]), to derive the required scaling rules; such
approaches are not well suited for dynamic environments,
such as clouds, with strict execution time SLAs.

In this paper, we focus specifically on enabling autoscal-
ing of data processing applications. Given its popularity,
we choose Hadoop [4] as our case study of a data pro-
cessing framework. Autoscaling of resources in Hadoop is
non-trivial because of the need to maintain data locality.
However, Hadoop is a distributed system that is also fault
tolerant. We exploit the fault tolerant design features in
Hadoop to realize run-time elasticity, enabling autoscaling
of Hadoop clusters while jobs are in progress, to meet user-
specified SLA targets.

We employ a model-driven approach to autoscaling.
Our approach involves developing approximate performance
models for Hadoop jobs that can then be tuned based

1



on the workload profile and cluster configuration, rather
than attempting to build exact workload-agnostic perfor-
mance models. In particular, we first derive generic white-
box performance models for Hadoop that take resource
allocation into account. We then employ (regression-based)
black-box modeling to tune our generic models for specific
workloads, including iterative machine learning algorithms.
The resulting gray-box models only focus on important
system parameters, providing very good accuracy (typically
less than 5% error) without being overly complex. Impor-
tantly, our gray-box models can be easily adapted to other
cluster configurations, as we show in our results. Finally,
we leverage these models to decide the scaling actions
needed to meet the execution time SLAs for data processing
workloads under a range of scenarios including autoscaling
while the job is in progress, autoscaling to recover from
failures, autoscaling to minimize resource rental costs, and
autoscaling to overcome resource contention. Our imple-
mentation results on two OpenStack-deployed private clouds
and an AWS EC2-based public cloud under various Hadoop
workloads (compute-heavy, I/O-heavy, and iterative multi-
job workloads) demonstrate the efficacy of our autoscaling.

The rest of the paper is organized as follows. Section II
provides necessary background on Hadoop. We describe
our experimental setup, including clusters and workloads, in
Section III. We discuss our modeling efforts in Section IV
and our evaluation results in Section V. We present related
work in Section VI and conclude in Section VII.

II. HADOOP OVERVIEW

We use Apache Hadoop [4] as our data processing
framework for this paper. Hadoop enables distributed data
processing on large data sets. The Hadoop cluster typically
consists of several nodes that together host the data on
HDFS [23] and provide computational resources. One node
is designated as the Master node, and the rest are designated
as Slave nodes. Hadoop applications submit jobs directly
to the Master. Each job is typically composed of a Map
stage and a Reduce stage. These stages are further split into
several tasks (for more details on Map/Reduce, we refer the
reader to the seminal MapReduce paper [13]). A task can
be considered as the smallest unit of work in Hadoop.

The Map/Reduce computations are managed by the
JobTracker service, hosted by the Master. Individual
Map/Reduce tasks are managed and executed by the Task-
Tracker service, hosted on each Slave node. The JobTracker
maintains queues for incoming tasks, and these tasks are
then assigned to TaskTrackers on Slave nodes. Depending
on the availability of resources, a job is typically processed
in several successive “waves” of tasks. Once all waves (and
thus, all tasks) are processed, the job completes. We use
job execution time as the performance metric in this paper.
Note that multiple jobs can be simultaneously executed on
a shared cluster.

The HDFS is managed by the NameNode service, typ-
ically hosted by the Master node. Individual data blocks
are managed by DataNode services, typically hosted on
each Slave node. Hadoop is designed to be fault tolerant.
The failure of a single task or node does not result in job
failure; the failed task(s) is simply restarted on another node
(although, in reality, multiple task failures can be triggered,
as discussed in Section V).

III. EXPERIMENTAL SETUP

We experiment with three different cloud deployments:
OpenStack Havana (private cloud): is composed of multi-
ple SoftLayer [24] hypervisors. Each hypervisor consists of
8 CPU cores and 64GB of memory. We set up Hadoop with
1 Master node VM and multiple Slave node VMs on this
cloud. Our default Slave node is configured with 1 core, 4GB
memory, and 80GB of disk space. We typically configure
1 slot per node, and run the TaskTracker and DataNode
on each Slave node. We use the default replication factor
of 3 and the default block size of 64MB for HDFS [23].
Unless specified otherwise, we use the OpenStack Havana
deployment.
OpenStack Icehouse (private cloud): is similar to the
Havana deployment, except that we employ the Capac-
ityScheduler [6] to execute multiple jobs simultaneously
in a shared Hadoop cluster, as opposed to the default
JobQueueTaskScheduler.
AWS EC2 (public cloud): is composed of multiple
t2.medium instances hosted in the N.Virginia region [2]
as our Master and Slave nodes with 2 vCPUs and 4GB
memory each. Again, we employ the CapacityScheduler for
this deployment.

A. Workloads
We employ three different Hadoop workloads for our

experiments: WordCount (included in Hadoop base instal-
lation), TeraSort (part of HiBench [21]), and Kmeans (part
of HiBench). WordCount is typically dominated by the Map
stage, and is CPU-bound. TeraSort is made up of a CPU-
bound Map stage and an I/O-bound Reduce stage. Kmeans
is a multi-job workload, made up of multiple CPU-bound
Iteration jobs and a single I/O-bound Classification job [19].

B. Autoscaling
In order to dynamically add and remove nodes from

the Hadoop cluster, we create a customized VM image
preloaded with Hadoop. A new Slave node can be dynami-
cally added by booting a new VM via OpenStack Nova using
the customized image, and then starting the TaskTracker and
DataNode services on it. The new node announces itself to
the Master using heartbeat messages. Note that the transfer
of existing HDFS data to the new Slave nodes should delay
task execution. While we did notice a transient performance
degradation while autoscaling for our EC2 cluster, we did
not notice any significant delays for our OpenStack clusters;

2



this is likely because of the high network bandwidth between
VMs on the same physical cluster as opposed to the low
bandwidth between distributed public cloud instances.

To dynamically remove a Slave node, we update the
exclude list on the Master and dynamically refresh the node
configuration. The Master then migrates the HDFS data, if
any, from this node before excluding it. Once excluded, the
node can be turned off via OpenStack Nova commands.

C. Controller
We employ a simple reactive controller to ensure execu-

tion time SLA compliance for Hadoop jobs. The execution
time SLA is provided as input to the controller, along
with job- and cluster-specific configuration parameters. We
modified Hadoop to periodically log the fraction of input
data that has yet to be processed. We use this informa-
tion, along with the workload-specific models described in
Section IV, to periodically predict the remaining execution
time of the job. If the predicted execution time exceeds
the SLA target, we invoke autoscaling. To determine the
amount of scaling that is required to meet the SLA target, we
again leverage our workload-specific models. Our controller
executes the autoscaling by issuing commands to the Hadoop
and OpenStack APIs. Experiments reported in Section V
employ this controller.

IV. MODELING

We now present our modeling results for various Hadoop
workloads. Our modeling methodology involves first de-
veloping generic performance models for Hadoop (Sec-
tion IV-B) based on its characteristics (Section IV-A). A list
of variables used in our modeling is shown in Table I for
reference. The resulting white-box models are then tuned,
via regression, based on the profiles of specific workloads
(Section IV-C). Validation tests (Section IV-D) illustrate the
high accuracy of our gray-box models. Our models are
very versatile and can be easily adapted to different cluster
configurations and resource sharing models (Section IV-E).
We employ our models for autoscaling in Section V.

A. Characterizing Hadoop Job Execution Time
A Hadoop job consists of a Map stage and a Reduce

stage. In the Map stage, all Map tasks are executed in
possibly multiple Map waves. Since each Map task processes
roughly similar sized input data (based on the default 64MB
block size), the execution times of different Map tasks, for
a given workload and cluster configuration, are similar. This
is confirmed by our preliminary experiments for different
WordCount Map tasks obtained using various input text files.
The Reduce stage can also have multiple Reduce waves,
with each Reduce wave consisting of a shuffle phase, a sort
phase, and a reduce phase. Depending on the configuration
setting (slowstart), the shuffle phase of the first Reduce
wave may overlap with the Map stage. For this reason, the
duration of the first Reduce wave is different from that of

Tjob Total job execution time
Tms (Trs) Execution time of Map (Reduce) stage
Tmt (Trt ) Execution time of Map (Reduce) task

Tf rw Execution time of first Reduce wave
Tsrw Execution time of subsequent Reduce waves

M (R) Number of Map (Reduce) tasks
Nmw (Nrw) Number of Map (Reduce) waves
Nmc (Nrc) Number of Map (Reduce) configured cores
nms (nrs) Number of Map (Reduce) slots/cores

D Size of input data

f (.) Relationship between Map task execution time on a core
and input data per Map task

g f (.) (gs(.))
Relationship between first (subsequent) Reduce wave task
execution time on a core and input data per Reduce task

Table I
LIST OF VARIABLES USED IN MODELING

subsequent Reduce waves; this was also observed in prior
work [26].

The scheduling of tasks (where a task can be either Map
or Reduce) on Slave nodes depends on the number of cores
per node and the number of slots per core. Note that the
number of slots per node is at least equal to the number
of cores per node. On a core, the slots are executed in a
processor-sharing manner. If only one slot is occupied, that
slot gets all the processor cycles. However, when multiple
slots are concurrently executing tasks on the same core, the
processor cycles are shared equally among these tasks.

Let Tms be the execution time of the Map stage (time taken
from the start of the first Map task until the end of the last
Map task). Let Trs be the non-overlapping execution time of
the Reduce stage (time taken from the end of the last Map
task until the end of the last Reduce task). Then, the total
job execution time, Tjob, is:

Tjob = Tms +Trs. (1)

A Map stage consists of one or more Map waves. Since
each Map wave involves concurrent execution of multiple
Map tasks across different Slave nodes, the execution time
of a typical Map wave is the same as that of a single Map
task, Tmt . Thus, if Nmw denotes the number of Map waves,
we have:

Tms = Nmw×Tmt . (2)

1) Map Task Execution Time (Tmt ): The input data is
equally partitioned (based on the block size) among different
Map tasks of a job and each Map task (for a given workload)
applies the same operation on its input data. Thus, the
execution time of a Map task depends on the size of its input
data (block size), the type of Map operation (workload),
and the core configuration (e.g., processor speed). Assuming
homogeneous cores in the cluster, we can write Tmt as some
function of the input data partition. Let D be the total input
data for the job and M be the number of Map tasks. Then
each Map task processes D/M amount of data. We also need
to account for the number of processor cycles allocated to
the task slot. Let Nmc be the number of cores in the cluster

3



configured with Map slots and let nms be the number of
Map slots per core. Since the core (and its cycles) is equally
shared by all resident slots, we can write:

Tmt = f (D/M)×min
(⌈

M
Nmc

⌉
,nms

)
, (3)

where the form of f (.) as a function of input data per Map
task depends on the workload. Note that f (D/M) represents
the normalized Map task execution time on a core if the
task gets all its processor cycles. However, given nms Map
slots per core, each Map task only gets 1/nms fraction of the
processor cycles, thus amplifying its execution time (by nms).
The min term in Eq. (3) accounts for the corner cases where
M is less than Nmc. To illustrate the significance of the min
term, consider an example cluster with M = 3, Nmc = 4, and
nms = 2. Since the number of Map tasks, M, is less than the
number of cores, Nmc, each core will execute one task, with
all the resources on the core devoted to that task. For this
case, min

(⌈
M

Nmc

⌉
,nms

)
=min(1,2) = 1, thus Tmt = f (D/M).

Now consider the case where M = 5. Since the number of
Map slots in the cluster is Nmc×nms = 8, and the number of
Map tasks is greater than Nmc but less than the total number
of map slots in the cluster, one core will execute two tasks
in parallel (sharing the processor cycles) while the other
three cores will execute one task each. Since Tmt depends
on the completion time of the last task(s) in a given cluster,
Tmt = f (D/M)×2.

2) Map Stage Execution Time (Tms): The Map stage
execution time, Tms, depends on the total number of Map
waves, Nmw. Nmw, in turn, depends on the total number of
Map slots available, Nmc×nms, as:

Nmw =

⌈
M

(Nmc×nms)

⌉
. (4)

From Eqs. (3), (4), and (2), we get:

Tms =

⌈
M

(Nmc×nms)

⌉
× f (D/M)×min

(⌈
M

Nmc

⌉
,nms

)
. (5)

Observe that in Eq. (5) we have expressed Tms as a function
of the input data size (D), number of Map tasks (M), and
cluster configuration parameters (Nmc and nms).

3) Reduce Stage Execution Time (Trs): Since a Reduce
wave involves concurrent execution of multiple Reduce
tasks, the execution time of a Reduce wave is (almost) the
same as the execution time of a Reduce task of the wave.
As discussed earlier, due to the overlap of the first Reduce
wave with the Map stage, the execution time of the Reduce
tasks belonging to the first Reduce wave is different from
that of subsequent Reduce waves. We only consider the
non-overlapping execution time of the first Reduce wave in
computing the total execution time of the job. Let Tf rw and
Tsrw be the execution time of first and subsequent Reduce
waves, respectively. To account for the discrepancy between
first and subsequent Reduce waves execution, we model the

dependency of Tf rw and Tsrw on Reduce task input data using
different functions, as follows:

Tf rw = g f (D/R)×min
(⌈

R
Nrc

⌉
,nrs

)
, (6)

Tsrw = gs(D/R)×min
(⌈

R
Nrc

⌉
,nrs

)
, (7)

where the min term on the right hand side (RHS) of Eqs. (6)
and (7) is due to the sharing of the processor on a Reduce
node by concurrent Reduce slots, with Nrc and nrs being the
number of Reduce cores and the number of Reduce slots
per core in the cluster, respectively. The functions g f and
gs represent the workload-dependent relationships between
input data and execution time for Reduce tasks of the first
and subsequent waves, respectively. Note that the input data
per Reduce task is not (D/R) since the Map stage modifies
the input data. Prior work [26] has shown that the Map stage
output data is typically proportional to the Map stage input
data, for a given workload. We use the g functions to model
this relation.

Lastly, to account for the overhead of data movement
in the Shuffle phase, we introduce a linear M/R term.
The numerator (M) denotes the number of Shuffle sources,
and the denominator (R) accounts for the fraction of data
transmitted to each Reduce task. With Nrw being the total
number of Reduce waves, we can write:

Trs = Tf rw +(Nrw−1) ·Tsrw +λ
M
R
, (8)

where λ is some (workload-dependent) constant. Using
expressions for Tf rw and Tsrw from Eqs. (6) and (7) in
Eq. (8), and setting Nrw = dR/(Nrc×nrs)e, we get:

Trs =

[
g f (D/R)+gs(D/R)

(⌈
R

(Nrc×nrs)

⌉
−1
)]
×min

(⌈
R

Nrc

⌉
,nrs

)
+λ

M
R
. (9)

B. Generic Model for Hadoop Job Execution Time
We now develop generic performance models for Hadoop

based on the above analysis. We will then tune our generic
models based on the workload in Section IV-C.

From Eqs. (5) and (9) we get the Map stage and Reduce
stage execution time in terms of the cluster parameters (Nmc,
Nrc, nms, nrs) and workload parameters (D, M, R). However,
f , g f , and gs are still unknown functions.

We approximate f , g f , and gs as polynomials with un-
known coefficients. In order to capture the possibly non-
linear dependence on input parameters, we approximate
these functions using second-order polynomials: f (D/M)≈
α0 + α1(D/M) + α2(D/M)2, g f (D/R) ≈ β0 + β1(D/R) +
β2(D/R)2, and gs(D/R)≈ γ0 + γ1(D/R)+ γ2(D/R)2, where
the α , β , and γ coefficients are workload-dependent parame-
ters and represent the specificity of a workload. The generic
performance models for Hadoop workloads can now be fully

4



expressed, with unknown coefficients, as:

Tms =
(
α0 +α1(D/M)+α2(D/M)2)

×
⌈

M
(Nmc×nms)

⌉
·min

(⌈
M

Nmc

⌉
,nms

)
,

Trs =
[(

β0 +β1(D/R)+β2(D/R)2)
+
(
γ0 + γ1(D/R)+ γ2(D/R)2)(⌈ R

(Nrc×nrs)

⌉
−1
)]

×min
(⌈

R
Nrc

⌉
,nrs

)
+λ (M/R),

Tjob = Tms +Trs.



(10)

Note that coefficient values can be zero. In fact, when
calibrating the models for different workloads, we find that
α2 ≈ 0, thus reducing f to a first-order polynomial.

C. Workload-based Model Tuning
We now tune our models via regression for specific

workloads. The training data for model calibration is col-
lected by running the workload with different data sizes and
hardware (number of nodes and the number of cores per
node) and software (number of Map/Reduce tasks and the
number of Map/Reduce slots per core) parameters. After
experimentation, we parse the Hadoop log files to obtain
observed values of different execution times, T̂ms and T̂rs.
The training data can now be used to determine the values
of the coefficients (α,β ,γ,λ ) in equation set (10) for each
workload.

To affirm the predictive power of our models, we obtain
the corresponding goodness of fit coefficient, the R2 value.
R2 is a statistical measure for regression and takes values
between 0 (low accuracy) and 1 (high accuracy). We also
define the training error, ∆, as the relative distance, mea-
sured as a percentage, between the observed data and the
regression hyperplane; smaller the percentage value, better
is the fit.

∆ =
1
N

N

∑
i=1

|Measured Value(n) - Model Value (n)|
Model Value(n)

,

where N is the number of data points.
While the profiling of workloads is an overhead and

requires time, it is necessary. Given the fundamental al-
gorithmic differences in various data processing workloads
(such as WordCount and Kmeans), it is not possible to
estimate execution times of a workload by profiling other
workloads. While run-time (online) model calibration of
workloads during their execution time is possible, it makes it
very difficult to meet application SLAs, especially for short
jobs that we consider in Section V which complete in a
few minutes. Finally, note that it is typically not possible
to estimate completion times by simply extrapolating job
progress because of the differences in Map and Reduce

Metric Model R2 ∆

Tms (0.4(D/M)+6) · dM/(Nmc×nms)e ·min(d M
Nmc
e,nms) 1 1.7%

Trs
(4.9+(5×10−4)(D/R)+(6.1+(7.3×10−3)(D/R)) .97 8.2%·(dR/(Nrc×nrs)e−1)) ·min(d R

Nrc
e,nrs)+0.1(M/R)

Table II
EXECUTION TIME MODEL FOR WORDCOUNT

Metric Model R2 ∆

Tms (0.6(D/M)−29) · dM/(Nmc×nms)e ·min(d M
Nmc
e,nms) 1 1.1%

Trs

(16.3+(3.9×10−4)(D/R)
.99 6.9%+((6.2×10−2)(D/R)+(5×10−6)(D/R)2)

·(dR/(Nrc×nrs)e−1)) ·min(d R
Nrc
e,nrs)+3.5(M/R)

Table III
EXECUTION TIME MODEL FOR TERASORT

stages (and the Reduce sub-phases such as Shuffle), which
lead to very different progress rates during the lifetime of a
job (see, for instance, Fig. 5(b)). This is further evidenced
by the non-linear terms in equation set (10).

1) WordCount and TeraSort: Tables II and III show
the estimated functions for Tms and Trs for WordCount
and TeraSort. The job execution time, Tjob, can then be
calculated using Eq. (1). The R2 and ∆ values suggest that
equation set (10) is a good fit for WordCount and TeraSort.

2) Kmeans: Kmeans is a complex multi-job workload
consisting of multiple CPU-bound Iteration jobs and a single
I/O-bound Classification job. We model its job execution
time in the two phases (Iteration and Classification) sep-
arately. The modeling for Kmeans proceeds along similar
lines as for WordCount and TeraSort, and is thus omitted.

D. Model Validation
We now validate the workload-specific models developed

above using test data. Note that the test data is different (in
terms of job and/or cluster configurations) from the training
data used to build the above models.

1) WordCount: Figure 2 shows our validation results
for WordCount using a 12GB input data set (resulting in
190 Map tasks and 1 Reduce task). We configure our
cluster to have 1 Reduce Slave node with 1 Reduce slot,
and multiple Map Slave nodes with 1 Map slot each.
Figure 2(a) shows our experimentally observed and model
predicted execution times for the above configuration as
a function of the number of Map Slave nodes employed
(recall, from Section III-A, that WordCount is dominated by
the Map stage). As expected, execution time decreases with
an increase in the number of Map Slave nodes. Prediction
accuracy for our model is very good, with less than 5% error.
Our comprehensive model can also be used to estimate the
execution time of individual tasks and stages. We illustrate
this capability in Figure 2(b) which shows the normalized
execution time of Map and Reduce tasks and stages. Again,
prediction accuracy is high.

2) TeraSort: Figure 3 shows our validation results for
TeraSort. We configure our cluster to have an equal number
of Map and Reduce Slave nodes, but we vary the number of

5



(a) Job execution times for WordCount as a function of number of
Map Slave nodes.

(b) Normalized execution times for WordCount for different tasks
and stages.

Figure 2. Observed versus Predicted execution times for WordCount using a 12GB input data set. Modeling error is typically less than 5%.

Figure 3. Observed versus Predicted normalized job execution times for
TeraSort. The lower (darker) stacked bars indicate the Map stage time, and
the upper (lighter) stacked bars indicate the (non-overlapping portion of)
Reduce stage time. The total height of each bar represents the job execution
time. Modeling error is at most 2%.

Figure 4. Map stage execution times for WordCount as a function of
capacity for our EC2 and Icehouse clusters (using CapacityScheduler).

slots per Slave node. We use a 20GB input data set (with 298
Map tasks and 1 Reduce task), and we configure 1 Reduce
slot per Reduce Slave node, and vary the number of Map
slots per Map Slave node. The experimentally observed and
model predicted normalized job execution times highlight
our modeling accuracy (at most 2% error). Note that, using
the equations in Table III, we are able to provide accurate

execution times for individual Map (lower bars) and Reduce
(upper bars) stages as well. We obtain similar results (at most
4% error) when varying the number of Reduce slots per
Reduce Slave node. Our experiments reveal that the number
of slots per node does not significantly affect execution time
(except for a small change in the number of Map and Reduce
waves due to rounding).

3) Kmeans: For Kmeans, we use a 1.5GB (75,000
records) input data set, resulting in 100 Map tasks. We
configure our cluster to have 1 Reduce Slave node with 1
Reduce slot, and multiple Map Slave nodes with 1 Map slot
each. The number of Reduce tasks is 1 for Iteration and
0 (Map-only job) for Classification. Our model predicted
execution times as a function of the number of Map Slave
nodes for the Iteration phase and the Classification phase are
within 5% of the experimentally observed execution times.
As expected, execution time decreases with the number of
Map nodes; detailed results are omitted due to lack of space.

E. Model Versatility
Our models are very versatile and can be easily applied to

different clusters. The values of the coefficients (α,β ,γ,λ )
in our model, that are determined via profiling, capture
the properties of the cluster configuration. Likewise, our
model also applies to clusters with different resource sharing
policies, as dictated by the scheduler. While the default
scheduler in the Havana deployment that we have considered
thus far only allows the execution of one job at a time,
the CapacityScheduler [6] allows multiple jobs to execute
simultaneously on the same cluster. Our resource-aware
models can be applied to such settings by treating the
resource allocation as job-specific. For example, if a core
has two Map slots and two jobs are simultaneously executing
on this core with a 50% capacity allocation each, then each
job will be entitled to Nmc = 0.5 Map cores (half a core).
Figure 4 shows our model validation results for WordCount
using a 768MB input file on our EC2 cluster (with 2 2-core
slave nodes with 1 Map slot and 1 Reduce slot per core) and
our Icehouse cluster (with 4 1-core slave nodes with 1 Map
slot and 1 Reduce slot per core). We see that our models

6



(a) Scaling up capacity for WordCount using our approach. Autoscal-
ing is triggered at 1000s, resulting in the addition of 2 Map Slave
nodes, thereby allowing the job to finish before the 3000s SLA.

(b) Autoscaling for TeraSort. Our approach scales up capacity for
the Reduce stage to ensure that the job completes before the 2000s
SLA.

Figure 5. Dynamically scaling up capacity to meet execution time SLA using our model-driven autoscaling approach for (a) WordCount and (b) TeraSort.

work very well even in the case of multi-job executions.
Importantly, Figure 4 shows that our models can be easily
extended to other cluster configurations.

V. EVALUATION

In this section, we leverage the above workload-specific
models to determine the amount of resources needed by a
given job to meet its execution time SLA. We employ the
controller described in Section III-C along with the models
in Section IV-C to execute autoscaling for various scenarios
(scaling capacity up/down, failures, resource contention)
across three different Hadoop cloud deployments (discussed
in Section III) using three different Hadoop workloads
(discussed in Section III-A). In all cases, we successfully
meet SLA targets by dynamically autoscaling the Hadoop
cluster. We now present a subset of our results in more
detail. In particular, we use our default OpenStack Havana
deployment to evaluate our approach for scaling up capacity
(Section V-A), scaling down capacity (Section V-B), and
scaling for performance recovery following node failures
(Section V-C). We then use our OpenStack Icehouse and
EC2 deployments (with the CapacityScheduler) to evaluate
our approach for scaling capacity in the presence of resource
contention due to multiple jobs (Section V-D).

For each experiment, we first illustrate results using the
default approach, referred to as Base, that does not employ
dynamic resizing. We then repeat the experiment and, to
highlight our controller, dynamically invoke our approach,
referred to as AutoScaling, while the job is in progress.

A. Scaling up capacity
Figure 5 demonstrates our ability to dynamically scale up

capacity as needed to meet execution time SLAs. Recall,
from Section III-B, that scaling up requires booting a new
VM, and then starting the TaskTracker and DataNode ser-
vices on it. In Figure 5(a), we run WordCount on a D=12GB
text file on our OpenStack cluster described in Section III.

The execution time SLA is set to 3000s. We initially start
the job with 1 Map Slave node and 1 Reduce Slave node.
Recall that WordCount is dominated by the Map stage. At
the 1000s mark, we notice that less than 20% of the input
data has been processed (via Hadoop log files), suggesting
a possible SLA violation. We thus invoke our autoscaling
controller. The controller leverages the model equations in
Table II for WordCount, using the job progress value to
adjust the input data size (D) accordingly; as 20% of 12GB
has been processed, we set D = 12× (1− 0.2) = 9.6GB.
Our model suggests adding 2 new Map Slave nodes to meet
the 3000s SLA; the controller then dynamically triggers
this addition (by making API calls to OpenStack) while the
job is executing. As seen in Figure 5(a), we successfully
meet our 3000s SLA with autoscaling. Observe that without
autoscaling we do not meet our SLA, as shown by our
experimental results for Base in Figure 5(a). The difference
in slopes between Base and AutoScaling after the 1000s
mark reflects the additional throughput afforded by the two
additional Map Slave nodes.

In Figure 5(b), we run TeraSort on a 10GB input data set
configured with 12 Reduce tasks. We set the execution time
SLA to 2000s. Since TeraSort is dominated by the Reduce
stage, we trigger autoscaling after the execution of the Map
stage. The controller leverages the model equations for Tera-
Sort (Table III), and determines that an additional Reduce
Slave node is required to meet the SLA. Accordingly, a
second Reduce node is dynamically added, allowing the job
to complete before 2000s. Observe that, without autoscaling,
the job would miss the execution time SLA, albeit barely, as
shown in our experimental results for Base in Figure 5(b).

B. Scaling down capacity
Scaling down capacity while still meeting the SLA helps

reduce resource wastage and associated resource rental costs.
Scaling down capacity in Hadoop is trickier than scale-out
because of intermediate data that might be stored at the

7



(a) Scaling down capacity for WordCount using our approach. The
naive autoscaling approach does not account for re-execution of lost
tasks, resulting in SLA violation. Our approach takes re-execution
into account, allowing the job to complete before the 3000s SLA.

(b) Autoscaling for Kmeans using our approach. We scale down
capacity between the Iteration phase and the Classification phase
while ensuring that the 1500s SLA is met.

Figure 6. Dynamically scaling down capacity while still meeting execution time SLA using our autoscaling approach for (a) WordCount and (b) Kmeans.

retiring node. In particular, when a node is dynamically
removed from a Hadoop cluster while a job is active, the
current tasks executing on that node, as well as completed
tasks of the active job on that node will be reinserted into the
JobTracker queue [27, Chapter 6]. By default, Hadoop will
re-execute these “lost” tasks, even if the Shuffle phase has
copied the data over to the Reduce nodes. This is because
the retiring node could also contain Reduce tasks, whose
data is now lost. Thus, there will be a significant delay in
the execution time of the job as a result of node removal.

Figure 6(a) illustrates this delay. Here, we start Word-
Count on a 12GB text file with 4 Map nodes and 1 Reduce
node. The SLA is set to 3000s. At the 1000s mark, we
invoke autoscaling. Given that the job has already processed
60% of the input data, our controller scales down capacity.
Using the model equations in Table II for WordCount,
the controller removes two Map nodes. This immediately
results in re-execution of lost Map tasks on the existing two
Map nodes. During this re-execution, job progress stalls,
as indicated by the flat horizontal line (dotted green line)
in Figure 6(a). Once the lost tasks are processed, progress
continues. Unfortunately, in this case, we miss the 3000s
SLA. Fortunately, we can improve our model to account for
delays due to re-execution of lost tasks. In particular, we
can compute the amount of additional data that must now
be processed due to node removals (which is simply the
amount of data processed thus far by the retiring nodes),
and add that to the unprocessed data size (D). The controller
now leverages the model equations for WordCount, using
the new unprocessed data size as the input parameter, and
computes the required scaling. Our model suggests that we
remove only one node to meet the 3000s SLA. As shown in
Figure 6(a) (solid blue line), we successfully meet the SLA
by removing one Map Slave node at the 1000s mark.

When scaling down capacity between jobs (as opposed to
during the execution of a job), lost tasks can be avoided.

Figure 7. Autoscaling for WordCount in the event of a failure. One node
fails at the 1000s mark. Autoscaling is then invoked, which results in the
addition of 2 Map nodes, allowing the job to finish by the 3000s SLA.

This is illustrated in Figure 6(b), where we run Kmeans on
a 75,000 records data set using 4 Map Slave nodes and 1
Reduce Slave node. The execution time SLA is set to 1500s.
We invoke autoscaling after the Iteration phase, and before
the Classification phase. Recall, from Section III-A, that the
Iteration and Classification are individual MapReduce jobs.
Thus, by triggering autoscaling between these jobs, we avoid
lost tasks, as illustrated by the continually progressing plot
(solid blue line) in Figure 6(b). Again, we successfully meet
the SLA (albeit barely) while scaling down capacity.

C. Scaling for failure recovery
Autoscaling can also be employed to recover from perfor-

mance loss following a node failure. Since a node failure is
similar to removal of a node, we use our updated model that
accounts for lost tasks. Figure 7 illustrates our failure recov-
ery scenario where we start with WordCount running on a
12GB input data set with 2 Map Slave nodes and 1 Reduce
Slave node. The SLA is set to 3000s. At the 1000s mark,
we trigger a Map Slave node failure. The controller detects

8



(a) Two jobs are started at time 0. Autoscaling is invoked at the 360s
mark, resulting in the addition of one node which is fully allocated
to our job, allowing the job to finish by the 600s SLA.

(b) One job is started at time 0. A second job joins the cluster at the
120s mark, slowing down our job. Autoscaling detects this slowdown
and adds two new nodes, allowing the job to finish by the 600s SLA.

Figure 8. Successfully autoscaling capacity using our approach for multi-job (resource contention) scenarios using 2 WordCount jobs with 2GB data.

the resulting loss in performance, via Hadoop log files, and
invokes autoscaling using the WordCount model equations.
Autoscaling results in the addition of two Map Slave nodes,
allowing the job to complete by 3000s. Without autoscaling,
the baseline approach (red dashed line) completes the job
after 6000s, significantly violating the SLA.

D. Scaling in the presence of multiple jobs
We now focus on the scenario where multiple Hadoop

jobs are simultaneously executed, as is common in shared
clusters. Recall, from Section IV-E, that our models easily
adapt to multi-job settings. Autoscaling in multi-job sce-
narios is complicated by the fact that other jobs can steal
capacity. Figure 8(a) illustrates this scenario on our EC2
cluster. We initially configure 1 2-core node with 1 Map slot
and 1 Reduce slot per core and start our job. The SLA is set
to 600s. Another job is started at the same instant, and results
in a 50% capacity allocation each. At the 360s mark, we
invoke autoscaling. Our controller detects the slow progress
and autoscales by adding one new slave node to our job. This
results in our job speeding up its execution and finishing
before 600s. Note the fractional nodes in Figure 8(a); this
is because of capacity sharing between jobs.

A more challenging scenario is depicted in Figure 8(b)
for our Icehouse cluster where a new job arrives during the
execution of our job, thus dynamically stealing capacity.
Without a dynamic controller, SLA compliance for this
scenario is infeasible. Fortunately, our approach can handle
such complex scenarios. We initially configure 2 1-core
nodes with 1 Map slot and 1 Reduce slot per core, and
set the SLA to 600s. At the 2-minute mark, we start a
second WordCount job (not shown) which is allocated 50%
cluster capacity. This results in a slowdown for our job as
shown for Base. However, our AutoScaling approach notices
the slowdown and autoscales by adding 2 additional 1-core
nodes for our job. This results in our job speeding up its
execution and finishing before 600s.

VI. RELATED WORK

Most of the existing work on allocating resources for
data processing jobs, such as ARIA [26], Elastisizer [20],
and CRESP [11], focus on optimal static allocation for
capacity planning of future jobs that are not yet deployed.
Our focus in this paper is on autoscaling the resources
allocated to a currently executing job so as to meet user-
specified SLA targets in the presence of unexpected events
such as failures and resource contention, which are all too
common in clouds.

There are a few recent works that address dynamic re-
source allocation for data processing workloads. Jockey [14]
is an SLA-compliant controller for data processing systems.
Jockey leverages past executions of a job to build a detailed
simulator capable of determining dynamic resource alloca-
tions. However, the past executions must be on a similar data
set, an assumption that we relax in our work as we allow
arbitrary input sizes (parameter D in our model). Further,
the authors acknowledge the long run time of the simulator,
thus proposing to use it in an offline manner, similar to
our modeling-based approach. Rayon [12] is a reservation-
based scheduler that allows for dynamic redistribution of
resources in YARN via preemption. The authors use an
an optimization framework to schedule jobs based on their
deadlines. Changes to the cluster capacity (due to, for
example, failures) trigger redistribution of resources and
may result in the rejection (and preemption) of jobs that
are unlikely to meet their deadline. Our approach goes
beyond redistribution and dynamically adds more VMs
as required to ensure SLA-compliance, thus allowing the
cluster to expand beyond capacity and avoid rejecting jobs.
ParaTimer [22] provides estimates of remaining time for
data processing jobs in the event of failures or contention.
Our approach can leverage the complementary work of
ParaTimer to provide more accurate estimates of remaining
data processing (the parameter D in our models).

MR-Runner [17] enables the sharing of an elastic MapRe-

9



duce cluster by redistributing resources based on user spec-
ifications. Fawkes [18] proposes a sharing mechanism for
dynamically balancing the resource allocation across multi-
ple MapReduce clusters. DynMR [25] makes better use of
existing resources by interleaving tasks during idle periods.
While the above approaches enable dynamic reconfiguration
of resources, they do not support SLA-driven resource allo-
cation, thus placing the burden of SLA compliance on the
users. Likewise, Amazon’s Elastic MapReduce [3] allows
users to add or remove MapReduce nodes online; however,
the user is responsible for deciding the dynamic resource
allocation, just as in the case of AWS Auto Scaling [1] and
OpenStack Heat [8]. By contrast, we specifically focus on
SLA-compliant resource autoscaling.

VII. CONCLUSION
Data processing is an especially appealing class of ap-

plications for cloud delivery because of its transient high
resource requirement for large data sets. Unfortunately,
exploiting the elastic nature of cloud resources for data
processing applications is challenging. In this paper, we
present our solution for agile autoscaling of cloud-deployed
data processing clusters. Our solution relies on our resource-
aware performance models that are further tuned for specific
workloads. With the help of these models, we accurately
estimate the dynamic resource requirements of a Hadoop job
for a given execution time SLA. Our experimental results
on OpenStack and EC2 clusters demonstrate the efficacy
of our solution under various use cases including resource
contention and node failures.

ACKNOWLEDGMENT
This research was supported by an NSF CRII CSR Grant

1464151 and a 2015 IBM Faculty Award.
REFERENCES

[1] Amazon Auto Scaling. http://aws.amazon.com/autoscaling.
[2] Amazon EC2. http://aws.amazon.com/ec2.
[3] Amazon Elastic MapReduce. https://aws.amazon.com/

elasticmapreduce.
[4] Apache Hadoop. http://hadoop.apache.org/.
[5] Apache Spark. http://spark.apache.org/.
[6] CapacityScheduler Guide. https://hadoop.apache.org/docs/r1.

2.1/capacity scheduler.html.
[7] OpenStack. http://www.openstack.org.
[8] OpenStack Heat. https://wiki.openstack.org/wiki/Heat.
[9] OpenStack Sahara. http://wiki.openstack.org/wiki/Sahara.

[10] Sean Kenneth Barker and Prashant Shenoy. Empirical Eval-
uation of Latency-sensitive Application Performance in the
Cloud. In Proceedings of the 1st ACM Conference on
Multimedia Systems, pages 35–46, Phoenix, AZ, USA, 2010.

[11] Keke Chen, J. Powers, Shumin Guo, and Fengguang Tian.
CRESP: Towards Optimal Resource Provisioning for MapRe-
duce Computing in Public Clouds. IEEE Transactions on
Parallel and Distributed Systems, 25(6):1403–1412, 2014.

[12] Carlo Curino, Djellel E. Difallah, Chris Douglas, Subru Kr-
ishnan, Raghu Ramakrishnan, and Sriram Rao. Reservation-
based Scheduling: If You’re Late Don’t Blame Us! In
Proceedings of the ACM Symposium on Cloud Computing,
pages 2:1–2:14, Seattle, WA, USA, 2014.

[13] Jeffrey Dean and Sanjay Ghemawat. MapReduce: Simplified
Data Processing on Large Clusters. In Proceedings of the 6th
Symposium on Opearting Systems Design & Implementation,
pages 137–150, 2004.

[14] Andrew D. Ferguson, Peter Bodik, Srikanth Kandula, Eric
Boutin, and Rodrigo Fonseca. Jockey: Guaranteed Job La-
tency in Data Parallel Clusters. In Proceedings of the 7th
ACM European Conference on Computer Systems, pages 99–
112, Bern, Switzerland, 2012.

[15] Anshul Gandhi, Parijat Dube, Alexei Karve, Andrzej Kochut,
and Harsha Ellanti. The Unobservability Problem in Clouds.
In Proceedings of the 3rd International Conference on Cloud
and Autonomic Computing, Cambridge, MA, USA, 2015.

[16] Anshul Gandhi, Parijat Dube, Alexei Karve, Andrzej Kochut,
and Li Zhang. Adaptive, Model-driven Autoscaling for Cloud
Applications. In Proceedings of the 11th International Con-
ference on Autonomic Computing, pages 57–64, Philadelphia,
PA, USA, 2014.

[17] Bogdan Ghit, Nezih Yigitbasi, and Dick Epema. Resource
Management for Dynamic MapReduce Clusters in Multiclus-
ter Systems. In Proceedings of the 2012 SC Companion: High
Performance Computing, Networking Storage and Analysis,
pages 1252–1259, Salt Lake City, UT, USA, 2012.

[18] Bogdan Ghit, Nezih Yigitbasi, Alexandru Iosup, and Dick
Epema. Balanced Resource Allocations Across Multiple
Dynamic MapReduce Clusters. In Proceedings of the In-
ternational Conference on Measurement and Modeling of
Computer Systems, pages 329–341, Austin, TX, USA, 2014.

[19] Bhaskar Gowda. HiBench: A Representative and Comprehen-
sive Hadoop Benchmark Suite. In Proceedings of the 2012
Workshop on Big Data Benchmarking, San Diego, CA, USA.

[20] Herodotos Herodotou, Harold Lim, Gang Luo, Nedyalko
Borisov, Liang Dong, Fatma Bilgen Cetin, and Shivnath
Babu. Starfish: A Self-tuning System for Big Data Analytics.
In Proceedings of the 5th Conference on Innovative Data
Systems Research, pages 261–272, Asilomar, CA, USA, 2011.

[21] Shengsheng Huang, Jie Huang, Jinquan Dai, Tao Xie, and
Bo Huang. The HiBench benchmark suite: Characterization
of the MapReduce-based data analysis. In Proceedings
of the 22nd International Conference on Data Engineering
Workshops, pages 41–51, Los Alamitos, CA, USA, 2010.

[22] Kristi Morton, Magdalena Balazinska, and Dan Grossman.
ParaTimer: A Progress Indicator for MapReduce DAGs. In
Proceedings of the 2010 ACM International Conference on
Management of Data, pages 507–518, Indianapolis, IN, USA.

[23] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and
Robert Chansler. The Hadoop Distributed File System. In
Proceedings of the 26th Symposium on Mass Storage Systems
and Technologies, pages 1–10, Lake Tahoe, NV, USA, 2010.

[24] SoftLayer Technologies, Inc. http://www.softlayer.com.
[25] Jian Tan, Alicia Chin, Zane Zhenhua Hu, Yonggang Hu,

Shicong Meng, Xiaoqiao Meng, and Li Zhang. DynMR: Dy-
namic MapReduce with ReduceTask Interleaving and Map-
Task Backfilling. In Proceedings of the Ninth European
Conference on Computer Systems, EuroSys ’14, pages 2:1–
2:14, Amsterdam, The Netherlands, 2014.

[26] Abhishek Verma, Ludmila Cherkasova, and Roy H. Campbell.
ARIA: Automatic Resource Inference and Allocation for
Mapreduce Environments. In Proceedings of the 8th ACM
International Conference on Autonomic Computing, pages
235–244, Karlsruhe, Germany, 2011.

[27] Tom White. Hadoop: The Definitive Guide. O’Reilly Media,
Inc., 2009.

10


